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1.1 Feedback

Please send all feedback to assembly@qdosmsq.dunbar-it.co.uk. You may also send articles
to this address, however, please note that anything sent to this email address may be used in a future
issue of the eMagazine. Please mark your email clearly if you do not wish this to happen.

This eMagazine is created in I&[[EXsource format, aka plain text with a few formatting commands
thrown in for good measure, so I can cope with almost any format you might want to send me. As
long as I can get plain text out of it, I can convert it to a suitable source format with reasonable ease.

I use a Linux system to generate this eMagazine so I can read most, if not all, Word or MS Office
documents, Quill, Plain text, email etc formats. Text87 might be a problem though!

1.2 Subscribing to The Mailing List

This eMagazine is available by subscribing to the mailing list. You do this by sending your
favourite browser to http://qdosmsqg.dunbar-it.co.uk/mailinglist and clicking on the
link “Subscribe to our Newsletters”.

On the next screen, you are invited to enter your email address twice, and your name. If you wish
to receive emails from the mailing list in HTML format then tick the box that offers you that option.
Click the Subscribe button.

An email will be sent to you with a link that you must click on to confirm your subscription. Once
done, that is all you need to do. The rest is up to me!


assembly@qdosmsq.dunbar-it.co.uk
http://qdosmsq.dunbar-it.co.uk/mailinglist

1.3
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Contacting The Mailing List

I’m rather hoping that this mailing list will not be a one-way affair, like QL Today appeared to be.
I’'m very open to suggestions, opinions, articles etc from my readers, otherwise how do I know
what I'm doing is right or wrong?

I suspect George will continue to keep me correct on matters where I get stuff completely wrong, as
before, and I know George did ask if the list would be contactable, so I've set up an email address
for the list, so that you can make comments etc as you wish. The email address is:

assembly@qdosmsq.dunbar-it.co.uk

Any emails sent there will eventually find me. Please note, anything sent to that email address will
be considered for publication, so I would appreciate your name at the very least if you intend to
send something. If you do not wish your email to be considered for publication, please mark it
clearly as such, thanks. I look forward to hearing from you all, from time to time.

If you do have an article to contribute, I’ll happily accept it in almost any format - email, text, Word,
Libre/Open Office odt, Quill, PC Quill, etc etc. Ideally, a I&IEXsource document is the best format,
because I can simply include those directly, but I doubt I'll be getting many of those! But not to
worry, if you have something, I’'ll hopefully manage to include it.


assembly@qdosmsq.dunbar-it.co.uk
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ASMReformat Comments

Not long after I published Issue 4 I received some feedback from Wolfgang Lenerz regarding the
code for the ASMReformat program listing, well, to be precise, the listing as published and the
output when run against a source file.

WL: Four traps aren’t defined in the code (io_fline, io_sbyte, io_sstrg, mt_frjob) you
might want to include the equ for these.

ND: I did wonder about this when I was writing the utility. GWASS includes a definitions file
automatically so when I had those equates in the source, I got errors that they were duplicated, so
I had to remove them. I was sure that QMAC did the same thing - but I haven’t had to use that
assembler since I started writing in QL Today all those years ago.

For anyone who needs them, here are the QDOS versions, from Pennell':

io_fline equ 2
io_sbyte equ 5
io_sstrg equ 7
mt_frjob equ 5

WL: I don’t know about Gwasl, but Qmac doesn’t allow, for the equ directive, the label and the
content to be on different lines:

label equ something

is ok

'The Sinclair QDOS Companion A Guide to the QL Operating System. © Andrew Pennell, 1985

“.

[ )
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label
equ something

is not ok....

ND: Hmm. I wasn’t aware of this, but as mentioned above, it’s been a long time! Perhaps, in a
forthcoming issue, I could amend the utility to accept a parameter string that prevents this line split
occurring. I'll look into it and see what I can come up with.

WL: Finally, for Qmac, you need simple "section x" at the start.
ND: This is true, and I think you also need an END at the end as well, if I remember correctly?

Anyway, I was assuming when I wrote the code that you would be passing your own code through
the utility to get proper/my/standard/whatever formatting. so I would assume that you already
have a SECTION x at the start (and an END at the end?) so they should be already there. Unless, of
course, you mean that it doesn’t work for those lines in a source file?

I’ve tested it on my own DJToolkit source, which was originally QMAC based, and it works fine.
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This program is something I remember writing many years ago when I was working in Ab-
erdeen,which was some time in the 11 years prior to 1996 when I moved South of the Border, to
deprive an Englishman of a woman and a job!'

Back then, I wrote it in C using Borland Turbo C++ Version 3.0 - probably the first program I ever
wrote in C on a PC.

Anyway, it’s a demonstration of something called Emergent Behaviour which is something that
emerges from some set of rules, but what emerges was not specifically programmed into the rules.

The way birds flock together, but manage not to crash into one another, for example, is based on a
couple of rules

* Fly in the same direction as your neighbour;
* Don’t fly too close nor too far away;
e Don’t fly into things.

(Or something similar). A program was written some years ago that embodied those rules and the
result was a flock of “boids” as the program was called. It’s quite famous.

Anyway, Langton’s Ant is another one of those, it has only two rules:

* If you are on a white cell, colour it black, turn right, step forward;
* If you are on a black cell, colour it white, turn left, step forward

That’s all there is to it.

The Program Listing

I coded this program in SuperBASIC first of all, just to get my head around the algorithm. When run
on QPC on my 10 year old laptop, it ran pretty damned quickly. And yes, the emergent behaviour

1Joke!

; N S0

i 1-”
)
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14 Chapter 3. Langton’s Ant

was there after about 10,000 steps, as expected.’

Anyway, I then coded it in Assembly and was wondering just how much faster it would be. The
answer? Pretty damned fast. I had to slow it down by inserting a one frame suspension of the job
which actually made it run slower than SuperBASIC! But that was then too slow, so I ended up
with a delay loop® instead.

; LANGTON’S ANT

; A small routine to demonstrate how emergent behaviour can, ahem,
; emerge from simple rules.

; See Wikipedia: https://en.wikipedia.org/wiki/Langton’s_ant

; The ant lives in a world which is a certain size wide and deep and
; the ends wrap around. It starts off in the middle, and walks in a
; downward direction — it makes no difference though, the behaviour

; will still emerge.

; If the ant lands on a cell which is white, it must turn it black,
; turn right, and walk on to the next cell in that new direction.

;. If the cell was black, the ant must turn it white, turn left , and
: walk on to the next cell in the new direction.

; That is all the rules. Run the program and see what happens!

: Norman Dunbar
; 17 February 2018.

; This source code is open source. Use it as you see fit and if you
; improve it, tell everyone and let them have the new source!

Listing 3.1: Langtons Ant - Opening Blurb

As ever, the code above introduces the program. Not much to see here, but there is a reference to
the Wikipedia article about Langton’s Ant.

; The sizes must be a power of two. We need this later when we limit
; them to anything between 0 and the size minus 1. If they are not a
; power of two, it doesn’t work the way I’ve done things later!

size_Xx

equ 512 ; Pixels across (width)
size_y

equ 256 ; Pixels down (height)

; Color names, better than guessing the colour values. The ESC key is
; defined here, or its bit number in D1 after an IPC call.

2See the Wikipedia article at https://en.wikipedia.org/wiki/Langton’s_ant
3 And delay loops burn CPU cycles and keep the computer busy where suspending the job would release resources
and let other applications run better.
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black

equ 0 ; Black cell colour
red

equ 2 ; It’s a red ant!
white

equ 7 : White cell colour
green

equ 4 ; The world colour
esc

equ 3 ; Bit number for ESC

Listing 3.2: Langtons Ant - Equates

The next section of code, above, are the equates that are needed. Please note that the two sizes,
size_x and size_y define the maximum width and height of the world in which the ant lives.
They must be a power of two because if they are not, bad stuff will happen later.

Various colours are also defined here, plus the bit that we need to check to see if there was a press
of the ESC key.

)

; Standard Job start.

)

start
bra.s Langton
dc.1 0
dc.w $4afb
name
dc.w nameEnd—name—2
dc.b "Langton’s Ant"
nameEnd
equ *

Listing 3.3: Langtons Ant - Job Header

The code above is the standard QDOSMSQ job header. You should be getting used to seeing these
by now!

£}

; BLOCK command parameter block.

Block
dc.w 1,1
xPos
dc.w Size_x/2,Size_y/2 ; 256, 128 initial coordinates

)

; Check ESC key pressed IPC command string.

ipc_command
dc.b 9,1,0,0,0,0,1,2 ; KEYROW(1)

)

: Screen channel name and window definition block.

scr_def
dc.w 4
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16 Chapter 3. Langton’s Ant

dc.b >ser_ ; No input needed, so SCR_
winDef

dc.w size_ X

dc.w size_y

dc.w (512—size_x)/2 ; Assumes 512 max width

dc.w (256—size_y)/2 ; Assumes 256 max depth

Listing 3.4: Langtons Ant - Command and Channel Definitions

The section of code above sets up a few commands, the first is the BLOCK command to draw a 1
pixel by 1 pixel block in the middle of the ant’s world.

Next to that is a command to allow the IPC processor to read the keyboard, specifically the
equivalent of KEYROW (1) which is where we find the ESC key.

Finally, we have the definition for a SCR_ channel and a block of words to redefine the window we
will set up on that channel. We do it this way because we only need to set the sizes of the ant’s
world, and hopefully, the assembler will work out the window definition for us. Lazy? Me?

; Subroutines to do a trap, test DO and die horribly if there was
. an error.

doTrapl
trap #1
bra.s testDO
doTrap2
trap #2
bra.s testDO
doTrap3
trap #3
testDO
tst.1 do
bne.s suicide
rts
suicide

move.l d0,d3

moveq #mt_frjob ,d0
moveq #—1,d1

trap #1

Listing 3.5: Langtons Ant - Trap Subroutines

The code above is a set of three simple subroutines to execute a trap instruction, check the error
return and to kill the job if an error occurred.

; The main starting place. Open a scr_ channel. The channel ID will
; stay protected in AO.L throughout the rest of the code.

Langton
lea scr_def , a0 ; Screen channel
moveq #io_open ,d0
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moveq
moveq
bsr.s

#—1,d1
#0,d3
doTrap2

)

; The screen channel is open, make the window the requested size.
Window
moveq #sd_wdef ,dO ; Window definition
moveq #0,d1
moveq #0,d2
moveq #-—1,d3
lea winDef , al
bsr.s doTrap3
; Set the paper to green.
Paper
moveq #sd_setpa ,dO ; Set paper to green
moveq #green ,dl
bsr.s doTrap3

£l

: And clear the entire

screen .

Cls
moveq
bsr.s

#sd_clear ,dO
doTrap3

; Cls

Listing 3.6: Langtons Ant - Start Here

This is the beginning of the real code. We open the channel to the screen, redefine it using the
window definition block above, which has been filled in with the appropriate sizes by the assembler,
set the paper to green and clear the screen.

Easy stuff, but anyone following http://qlforum.co.uk will know that I had a few problems and
needed help. I was calling the wrong trap instructions, so instead of opening a channel, I was
creating a weird job instead. Not good when you try to set paper colour on a job id rather than a

channel id!

; The cells bitmap
; or set
; difference — try

; the same results.

for black.

defines the
Initially , all
setting the

ant’s world. A bit is
cells

cells to FF (all

clear for white
It makes no
black) and you’ll see

are white .

clearCells
lea
move . 1
moveq
move .w
Isr.w
mulu
bra.s

clearLoop

cells , a3

a3,a2

#0,d0

winDef (pc) ,d0
#3,d0
winDef+2(pc) ,dO0
clearNext

; The ant’s world
; Use A2 for the
; Byte counter

; Get width in pixels

; Calculate width in bytes
; Times height

lives here

loop

in pixels
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18 Chapter 3. Langton’s Ant

clr.b (a2)+ ; Clear one byte

clearNext
dbra d0, clearLoop : And the rest

Listing 3.7: Langtons Ant - Initialise the World

The ant’s world is determined by a bitmap where one bit represents the white or black colour of a
cell within the world. The code above clears out the bitmap to ensure that no random bits are to be
found. The ant’s world is coloured white at the start.

However, feel free to change this to black and fill each byte with $F Fj,, instead, if you wish. It is
the rules that determine the behaviour.

It should be noted that the size of the ant’s world should not exceed a word sized register when
multiplying. The calculation is height * (width/8) because each byte represents 8 pixels across.

; Initialise A2 to point at the block command parameters. We need it
; in Al actually , but Al gets corrupted so we save it in A2. We also
; load up the initial position of the ant into D2. The top word of D2
: 1s the Across coordinate , the low word is the Down coordinate. D5

; is set to zero, for DOWN, which is the direction the ant is facing.
; Try changing it, see what happens.

; AS is set to the IPC command string , which we need in A3 later. So
; as A3 is preserved through an IPC call, we can EXG these two.

lea Block , a2 ; Needed in Al later

move.l xpos(pc) ,d2 : Hi = Across, Lo = Down
moveq #0,d5 ; Direction ant is walking
lea ipc_command , a5 ; Read KEYROW 1 for ESC key

Listing 3.8: Langtons Ant - Initialising Constants

The code above initialises some constants within the program. A2 which is never corrupted
throughout the program, holds the address of the BLOCK command. We actually need that in A1 but
that gets corrupted in places, so A2 is a good place to keep it safe.

D2 is initialised with the initial coordinates which have been set to be half the width and half the
height of the ant’s world. The upper word of D2 is the x or across coordinate and the lower word is
the y or down coordinate.

D5 holds the direction that the ant is facing. It is initially facing down, but this can be changed if
you wish, make sure you set it to a value between zero and three though.

Finally, A5 holds the address of the IPC command to read the keyboard. This is actually something
we need in A3 but that is needed elsewhere, so A5 was a handy place to keep it. We will swap those
two registers over as and when we need to.

Talking of registers...

; REGISTERS USED BEYOND THIS POINT

; DO = Trap codes.

; DI = Ant or Cell colour, red, white or black.

; D2 = Hi word = Across, Lo word = Down coordinates .
; D3 = Timeout for traps. —1 always.
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; D4 = Bit number within Cells bitmap, for the current pixel.
; DS = Direction indicator. O=Down, l=Left, 2=Up, 3=Right.

; D6 = Used to calculate A4 and D4 each time through the loop.
; D7 = Copy of Direction, used in walking to next cell.

;. A0 = Channel Id

; Al = Used for trap calls.

; A2 = Pointer to BLOCK command in job code. (Used in Al.)

; A3 = Pointer to Cells bitmap.

; A4 = Pointer to byte in Cells where current coordinates is found.
; A5 = Pointer to IPC command to read KEYROW 1 for ESC key.

; A6 = Reserved for QDOS/SMSQ

; A7 = Stack Pointer.
; Cells Bitmap.
; The cells array of bytes measures size_y % (size_x / 8) bytes

; and holds 1 bit for every cell in the screen (512 % 256 default)
; with a zero bit meaning a white cell and a 1 bit being black.

Listing 3.9: Langtons Ant - Register Usage

The comments above show the usage of the registers in the remainder of the program. As you can
see, I’'m just about using all of them for one thing or another.

; And here we start the main loop. We adjust the ant coordinates to
; fall into range. This is why we used a power of two as the sizes as

; it makes it easier to keep the coordinates in range 0 to size — 1.
antWalk
andi.w #size_y —1,d2 ; Make down 0 to size_y—1
swap d2
andi.w #size_x —1,d2 ; Make across O to size_x—1
swap d2
move.l d2,4(a2) ; Update block coordinates

; We have saved the adjusted coordinates in the BLOCK command’ s
; parameters , plot the current ant position with a red pixel. Good
; luck seeing that, it moves pretty quickly!

il

plotAnt
moveq #sd_fill ,dO ; Block command
moveq #red ,dl1 ; It’s a red ant of course!
move.l a2,al ; Block parameter block
bsr doTrap3 ; Won’t return on error

Listing 3.10: Langtons Ant - Start of Loop

This is the code that runs our ant’s world. Because we made the width and height of the world a
power of two, we can subtract 1 to get a mask that will ensure that it will remain in range and this
also helps in wrapping the ant’s world around, top and bottom as well as left and right.

Given that width, for example, is 512, then ANDing the across coordinate with 511 will cause it to
be in range 0 to 511 always. If it becomes 512 then and will reset it to 0. If it goes to minus 1, the
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and will reset it to 511 - and so, we have a simple way of wrapping the coordinates.

; We need to get the current cell at this point. We want the address
; of the current byte in A4 and the number of the bit in that byte in
; D4. At this point we have:

. A3
;. D2

the cells bitmap start address.
Across | Down coordinates .

; First work out the bit number in the cell s byte. This is simply
; 7 — (across coordinate MOD 8).

E}

bitNumber
move.l d2,d6 ; Copy Across | Down coords
swap deé ; Down | Across
move.w d6,d4 ; Copy Across coordinate to D4
andi.w #7,d4 ; Mod 8 = 0 to 7
neg.w d4 ; =7 to O
addq.w #7,d4 : D4.W = bit number

; The byte within the row, which we calculate soon, is calculated as
; (across coordinate DIV 8). Easy.

byteNumber
Isr.w #3,d6 ; Across div 8

; The correct row number in the cells bitmap is the Down coordinate

; multipled by (size_x DIV 8). This shouldn’t exceed a word size. The
; result is added to A3 which is the start address of the cells

; bitmap and loaded into A4 as the byte address that we want.

doRow

move.w #size_x ,d7 : Pixels across

Isr.w #3.,d7 ; Now bytes across

mulu d2,d7 ; Times down coordinate
lea 0(a3,d7.w) ,a4d ; Address of correct row
adda.w d6,a4d ; Correct byte in row

; Given the byte address in A4 and the bit number in D4, we can now
: test that individual bit. A zero is white while a 1 is black.

btst d4,(a4) ; 0 = white, 1 = black
Listing 3.11: Langtons Ant - Pixel Calculations

The code above takes the two coordinates of the ant’s current cell and from them works out which
bit in the bitmap represents that cell.
There are four things we need:

* The base address of the cells bitmap. This is held in A3.
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e The correct “row” in the bitmap; This will be in D7.
* The correct byte within the row; This will be in D6
* The correct bit within the byte; This will be in D4.

The calculations are reasonably simple:
D4 =7 — (Across mod 8)

D6 = (Across div 8)

D7 = Down x (width div 8)

Once we have calculated all those, we need simply to load the byte address into A4 and the bit
number into D4 and then we can test the bit to see if it is black or white, with zero being white.

b}

; Rule 1: If the cell is white, turn it black, right turn, walk on.

k]

ruleOne
bne.s ruleTwo
bset d4,(a4) ; Turn it black in the bitmap
moveq #black ,dl1 ; Colour for BLOCK command
subq.b #1,d5 ; Direction — 1 = right
bra.s doDirection ; Prepare to walk on

Listing 3.12: Langtons Ant - Rule 1

This is the code for rule 1. If the cell that the ant arrived on is white then colour it black and make a
right turn by subtracting 1 from the direction. We don’t actually colour the cell here, we simply set
the cell’s new colour, black, in D1 ready to be plotted below.

)

; Rule 2: If the cell is black, turn it white, left turn, walk on.

ruleTwo
belr d4,(a4) ; Turn it white in the bitmap
moveq #white ,d1 ; Colour for BLOCK command
addq.b #1,d5 ; Direction + 1 = left

Listing 3.13: Langtons Ant - Rule 2

This is the code for rule 2. If the cell that the ant arrived on is black then colour it white and make a
left turn by adding 1 to the direction. Again there is no actual colouring here, we simply set D1 to
be white, ready for later.

)

; We have adjusted the direction. Make sure we restrict it to 0 — 3.
doDirection

andi.b #3,d5 ; Restrict to 0 to 3

move.b d5,d7 ; Copy new direction

; Ready to walk on in the new direction.
; The directions are:

; UP
: 2
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; LEFT 3 1 RIGHT

R 0

; DOWN

; So, if direction is up (2) then turn
; Plus 1 = turn left

; Minus 1 = turn right.

; If direction = down = 0 then Down

; If direction = right = 1 then Across
; If direction = up = 2 then Down

; If direction = left = 3 then Across

right = 1 and turn left = 3

+
—

Listing 3.14: Langtons Ant - New Direction

Most of the code above is simply comments explaining the directions and how adding or subtracting
1 from the current direction equates to a left or right turn. However, we do have to be careful to
make sure that the direction, in D5 is restricted to the values O through 3 only.

Because we are going to mess about with the new direction value, in the code below, we copy it to

a working register, in this

case, D7.

]

; Check the direction for Down, if not then skip, otherwise adjust
; the Down coordinate by +1.
doWalk
bne.s tryRight
doDown
addq.w #1,d2 ;: Down + 1
bra.s doPlot
; Check if the new direction is Right. If so, adjust the Across
; coordinate by +1.
tryRight
subq.b #1,d7
bne.s tryUp
doRight
swap d2 ; Down | Across
addq.w #1,d2 ; Across + 1
swap d2 ; Across | Down
bra.s doPlot
; Check if the new direction is Up. If so, adjust the Down coordinate
; by —1.
tryUp
subq.b #1,d7
bne.s doLeft ; Must be left
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doUp
subq.w #1,d2 ; Down — 1
bra.s doPlot

)

; The new direction must be Left. Adjust the Across coordinate by —1.

doLeft

swap d2 ; Down | Across
subq.w #1,d2 ; Across — 1
swap d2 ; Across | Down

Listing 3.15: Langtons Ant - Walk On

Because we just ANDed the new direction to keep it in range, we might have set the Z flag. If so, the
new direction is Down. In that case we add 1 to the current down coordinate in the low word of D2,
and skip over the rest of this code section.

Assuming we are not in the downward direction, we check for a heading towards the right. Subtract-
ing 1 will set the Z flag if we are now facing right. If so, we add 1 to the current across coordinate
in the high word of D2 and skip the remaining processing.

If we are not facing to the right, are we facing up? Again, subtracting 1 from D7 will set the Z flag.
If so, we need to subtract 1 from the ant’s current down coordinate in register D2’s low word.

Finally, we can only be facing to the left. We have to subtract 1 from the ant’s position in the across
direction, which is the high word of register D2.

We are now ready to take a step in the new direction as set in D2 but first we have to colour the
current cell, which happens to be red at the moment, black or white according to register D1.

: We can overwrite the red ant at the current coordinates with either
; a black or a white cell. When we get here, DI holds the correct
; colour.

doPlot

moveq #sd_fill ,dO ; Block command
move.l a2,al ; Block parameter block
bsr doTrap3 ;: Won’t return on error

; We have overwritten the current coordinate , update the BLOCK
; parameters with the new coordinates — this is effectively a single
; step in the new direction.

nowMove
move.l d2,4(a2) ; Update coordinates

Listing 3.16: Langtons Ant - Plot New Cell Colour
The code above plots a white or black cell over the red pixel at the ant’s original position* with a
black or white pixel, depending on which of the two rules were activated by the ant’s new position.

Once we have plotted the current cell in the correct black or white colour, we store the new
coordinates for the ant in the BLOCK command’s parameter, ahem, block. This means that when

4To be honest, the program runs so quick that you almost never see the red ant in the original plot but if you slow it
right down, you might see it better.
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we next pass through the loop, the ant’s new coordinates will be plotted in red again, showing the
ant’s new position.

; Read the keyboard and check on the ESC key. If pressed, we are done
; here. If not pressed, go around again after suspending for a few

; frames.

hadEnough
move.w d5,—(a7) ; Direction gets corrupted.
exg a3, as ; We need the IPC command in A3
moveq #mt_ipcom , d0 ; IPC command coming up
bsr doTrapl ;: Dies on error
move.w (a7)+,d5 ; Restore direction
exg a3, as ; Cells address in A3 again
btst #esc ,dl ; ESC pressed?
beq hangAbout ; No, pause then go around
moveq #0,d0 ; Yes, show no errors
bra suicide ; Kill myself

Listing 3.17: Langtons Ant - Checking ESC

This section of code checks if the ESC key is being pressed, once around the main loop. Unusually,
this call to QDOSSMSQ corrupts register D5 so we need to preserve it on the stack during the
call. It also helps if you restore it afterwards - which I forgot to do and enjoyed many happy hours
debugging a strange bug where the code ran for a while, then simply stopped.

; Delay processing for a few clocks. Without this, the job has pretty
; much finished by the time you get to see the screen!

hangAbout ;bra antWalk ; Uncomment for full speed!

moveq #3,d0 ; Adjust if too slow/fast
dOLoop moveq #—1,d1 ; Inner loop counter
d1Loop nop ; Delay a bit

nop ; Delay a bit more

dbra dl ,d1Loop ; End inner loop

dbra d0,dOLoop ; End outer loop

bra antWalk ; Go around

Listing 3.18: Langtons Ant - Delaying Tactics

When I first wrote this assembly version, I didn’t have a delay. The code pretty much finished
before the first appearance of the screen so I had to slow it down.

Initially I suspended the job for 1 frame, but that slowed it down quite a bit, too slow in fact - my
SuperBASIC version was much quicker!

In the end, I slowed it down with a pair of NOPs executed 3 * 65536 times. If your QL or emulator
is too slow (or still too fast) adjust the value in DO to suit.

If you want to see exactly how fast the code is with no delays, uncomment the code at label
hangAbout and be amazed!
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4378 ; This is the ant’s world. It is a bitmap representing the cells that
438 B ; the ant walks over. Each bit defines the colour of a cell. Zero is
4398 ; white and 1 is black.

4408 ;

441 1 cells

442 ds.b size_y=(size_x/8)

Listing 3.19: Langtons Ant - The Ant’s World

The final part of the listing simply defines a world for the ant. This world consists of one bit per
cell and as there are 8 bits (or cells) per byte across the world, we divide by 8 to get the correct
number of bytes.

We don’t divide for the depth as we need one row per cell in the downward direction.

So that’s it. Download the code (or type it in!) from the usual location - http://qdosmsq.dunbar-
it.co.uk/downloads/Assemblylanguage/Issue_005/ - assemble it GWASL works fine - and EXEC it.
It will run for a bit creating what looks a fairly random pattern on the screen, but then, after about
10,000 iterations of the antWalk loop, it will head off in a straight line for no apparent reason. This
is the emergent behaviour from two simple rules.


http://qdosmsq.dunbar-it.co.uk/downloads/AssemblyLanguage/Issue_005/
http://qdosmsq.dunbar-it.co.uk/downloads/AssemblyLanguage/Issue_005/
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In the last issue, we took a long look at the addressing modes that are now available when using an
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MC68020 processor as found in QPC - and possibly, but I don’t yet know - in other emulators too.

The old BBQL' uses an MC68008 and cannot cope with the new stuff.
To assemble these 62020 instructions, you need a copy of Gwass available from George’s web site.”

One problem I have noticed when using the 68020 instructions, when debugging with QMON, it
sometimes gets a tad confused as to exactly which instruction it is executing! Given the age of
QMON (and other monitor programs & debuggers) it’s hardly surprising that it knows nothing
about the 68020, it was current when the 68008 was still de-rigeur!

Here are the subjects I will cover in this issue, in relation to the 68020:

* Word and Long memory accessing need no longer be on an even address.
* New bit field instructions.

* Instructions to convert between character and decimal numbers.

» Upgrades to existing instructions.

* New instructions - those not already covered above.

Word and Long Memory Access Need Not Be Even!

This is something that I’ve been quietly using and never noticed for a while, at least since QPC was
upgraded, with George’s help and input, to use a 68020 processor.

Once that happened, any time that I inadvertently accessed a word or long sized memory access,
nothing happened! In the old days, and on the BBQL itself, the 68008 would have died horribly
when that happened.

For example:

IBlack Box QL
Zhttp://gwiltprogs.info/page2.htm

i 1-”
)
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start

lea oddAddress ,al

move.w (al),dO
dc.b 0 ; This should cause an odd address
oddAddress

equ *

Listing 4.1: How to Blow Up an MC68008

Of course, it doesn’t really cause the processor a problem, it simply follows its programming
and raises an Address Error Exception. Unfortunately, the QL’s handling of such an exception is
somewhat flawed and this will cause either a complete and utter lock up, or something far worse.

On QPC and on other computers or emulators with an MC68020 processor, the address exception
no longer happens.

Bit Field Instructions

The M68000 family architecture supports variable-length bit field operations on fields of up to 32
bits - in a register - and almost unlimited width in memory. These instructions can be quite handy,
as will be shown later, but first, what exactly is a bit field?

Bit Fields

A bit field is simply a number of consecutive bits in an effective address. A bit field is always
specified in curly brackets ‘{” and ‘}” and there are two parts, the offset and the width, separated by
a colon:

{offset:width}
The offset is the first bit numbering starts at zero for bit 31 and ends up at 31 for bit zero - beware!

You can calculate the desired starting bit number by subtracting the highest bit you want from 31.
So, for example, if you want bits 15, 14, 13, 12 and 11 of a register, subtract 15 from 31 to get 16.
16 would be the offset and there are 5 bits, so the bit field specification for the appropriate opcode,
would be:

{16:5%}

For example, in many opcodes, the size of the operand - .B, .W or .L - is specified in bits 5 and
6 of the opcode instruction word in memory.This is therefore a 2 bit wide bit field, starting at bit
31 — 6 = 25 and would be represented as follows:

{25:2}
This would be tagged onto the end of one of the new bit field instructions.

You should note that although the bits number from the left, bit O is the most significant bit and
bit 32 the least significant bit, the bit fields start at the given offset and continue towards the least

3This really does my head in! All those years of counting from the right, now I have to start counting from the left as
well.
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significant bit for the defined width. This is the complete reverse of the bit numbering in the
registers normally.

Table 4.1 is a handy conversion table. Just look for the bit number in a register that you want to
start from and find the bit field offset value in the row above (or below) it.

3113029 28|27 |26|25 (24|23 (22|21|20|19| 18|17 |16
1 2| 3, 4] 5| 6| 7] 8] 911011 14 | 15

Table 4.1: Register Bit Field Conversion Table
For example, to start a bit field in register bit 7, we find 7 on the bottom row with 24 above it. So

the offset part of our bit field will be 24. Equally, if we wanted to start from register bit 20, we find
that on the top row with 11 below it, so 11 is our desired offset. Easy?

Offsets

The offset can be specified as a number from O to 31, no other numeric literals are permitted.
However, the offset can also be a register name and in that case, all 32 bits can be used, giving an
offset of anything from —23! to 232 —1).

These rather large offsets are only for instructions acting on memory locations. It is rather difficult
to imagine what a negative offset on a data register, for example, would resolve to!

If an address register, for example, holds a value that is used as the effective address in the
instructions, then that is known as the base address. The most significant bit, bit 7, of the base
address is offset zero in any bit field. All bit fields are relative to this particular bit.

Negative offsets are fairly simple to use. Assume you have the following code:

start
lea baseAddress ,al ; Base address
bfextu (al){0:8},dl ; DI gets $12
D bfextu (al){—32:8},d2 ;. WILL NOT ASSEMBLE'!
move.l #-32,d2 ; Try again, offset
bfextu (al){d2:8},d2 ; D2 gets $9A
move.l #24.,d7 ;. Offset
move.l #4,d6 ;. Width
bfextu (al){d7:d6},d3 ; D3 gets $07
negAddress
de.1 $9abcdeff ; Negative offset here
baseAddress
de.1 $12345678 ; Base address here

Listing 4.2: Bit Field Negative Offsets Example

So the first thing to note is that attempting to use any numeric literals for the offsets will cause
assembly errors as they are outside the range 0 to 31 inclusive. This is why we had to use D2 as the
offset and the receiving register for one of the instructions.

The data read into D1 is the 8 bits from baseAddress which is the value $12;,,.

The value loaded into register D2 is from 32 bits prior to the address in A1, which corresponds
to the address of negAddress. We therefore get 8 bits from that location loaded into D2 and that
works out at $9A,,.
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Finally, D6 and D7 are set up to give a 4 bit width at offset 24 and the 4 bits at that offset from A1 is
the nibble $7;,,. That value is loaded into D3.

All the values loaded replace the full 32 bit width of the receiving registers.

Widths

Widths are a lot easier than offsets, especially when working with data in RAM. When specified as
a number, the width is always between 1 and 32. Any other value results in assembly errors.

When a data register is used to specify the width, the actual width value is taken from the bottom
5 bits of the register and will thus be limited to values between 0 and 31. Hang on! Widths are
supposed to be from 1 to 32 bits, not zero to 31. If the register value is zero, then the width is taken
to be 32!

When dealing with memory bit fields, the offset and width can cause the bit field to span over 5
separate consecutive bytes in RAM. The processor can cope happily with this. For example:

bfextu (al){6:32},d1 spans the 5 bytes from the address in A1 starting at offset 6 of that address
(bit 1), passing through the next three bytes, and ending up in the 5th byte at its bit 2 (inclusive).

Byte 1 ‘ Byte 2 ‘ Byte 3 ‘ Byte 4 | Byte 5
7165141312110 7-0 7-0 70 7| 6| 5| 4| 3] 2]1]0
-l - - -] -1 - 1]2 3-10 | 11-18 | 19-26 | 27 |28 |29 |30 |31 32| -] -

Table 4.2: 5 Byte Bit Field Example

In table 4.2, the top row is the bit numbers in the memory bytes at (A1) onwards. The bottom row
is the bit numbers in the bit field {6:32}. For space reasons the three full bytes in the middle are
shortened.

Lets examine the new instructions.

BFCHG - Test Bit Field and Change

The BFCHG instruction sets the condition codes according to the current value in a bit field at the
specified effective address, then ones-complements the bit field.

For example, a bit field referencing 5 bits starting at bit 5 of D5, would resemble BFCHG D5{26:5}.
The instruction tests the bit field first, then sets the flags as follows before changing the bit field:

* X - Not affected.

* N - Set if the most significant bit of the field is set; cleared otherwise.
e 7 - Set if all bits of the field are zero; cleared otherwise.

* V - Always cleared.

* C - Always cleared.

BFCLR - Test Bit Field and Clear

The BFCLR instruction Sets condition codes according to the value in a bit field at the specified
effective address and finally clears the specified bit field.

The instruction tests the bit field and sets the flags as follows:

¢ X - Not affected.
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* N - Set if the most significant bit of the field is set; cleared otherwise.
e 7 - Set if all bits of the field are zero; cleared otherwise.

* V - Always cleared.

* C - Always cleared.

An example to clear the three bits 6, 5 and 4 of the memory address that A1 points to, would be:

BFCLR (A1){1:3}

BFEXTS - Extract Bit Field Signed

The BFEXTS instruction extracts a bit field from the specified effective address location, sign extends
it to 32 bits, and loads the result into the destination data register.

The instruction sets the flags as follows:

* X - Not affected.

* N - Set if the most significant bit of the field is set; cleared otherwise.
Z - Set if all bits of the field are zero; cleared otherwise.

* V - Always cleared.

* C - Always cleared.

For example, to extract the three bits 6, 5 and 4 of the memory address that A1 points to, into
register DO, with bit 6 indicating the sign, would be:

BFEXTS (A1){1:3},DO

The flags are set according to the value in the bit field moved into DO, in this case. Bit 4 of the byte
would end up in bit zero of DO, bit 5 in bit 1 and bit 6 would be sign extended into all bits from bit
2 to bit 31 (in the normal manner of numbering bits).

BFEXTU - Extract Bit Field Unsigned

The BFEXTU instruction is similar to the BFEXTS instruction above, but is unsigned. It extracts a bit
field from the specified effective address location, zero extends it to 32 bits, and loads the results
into the destination data register.

The instruction sets the flags as follows:

* X - Not affected.

* N - Set if the most significant bit of the field is set; cleared otherwise.
* 7 - Set if all bits of the field are zero; cleared otherwise.

* V - Always cleared.

e C - Always cleared.

For example, to extract the three bits 6, 5 and 4 of the memory address that A1 points to, into
register DO, would be:

BFEXTU (A1){1:3},DO

The flags are set according to the value in the bit field moved into DO, in this case. Bit 4 of the byte
would end up in bit zero of DO, bit 5 in bit 1 etc.



4.2.6

N B W =

[o <N

4.2.7

32 Chapter 4. Using the MC68020 - Part 2

BFFFO - Find First One in Bit Field

The BFFFO instruction searches the source operand for the most significant bit that is set to a value
of one.

The bit offset of that bit (the bit field offset in the instruction plus the offset of the first one bit in the
bit field) is placed in the specified data register.

If no bits in the bit field are set, the result is the field offset plus the field width.
The instruction sets the flags as follows:

* X - Not affected.

* N - Set if the most significant bit of the field is set; cleared otherwise.
» 7 - Set if all bits of the field are zero; cleared otherwise.

* V - Always cleared.

* C - Always cleared.

An example to find the first set bit within the 9 bits of register DO, starting at bit 15 and extending
down to bit 6, setting the result in register D1, would be:

BFFFO D0O{16:9},D1.

If there were no set bits in the bit field, the result in DO would be 16 +9 or 25, otherwise it would
be 16+ < bit number of set bit >. Bear in mind, the first one bit is the bit number in the bit field
and not the bit number in the register or memory location. The bit numbers in the bit field start
from zero and increase up to the field width minus 1.

This example should help:

start
clr.1 do ; No bits set in DO
bfffo do{16:9},d1 ; No bits set, so DI=16+9=25
; {16:9} —— ——— — (Bit Field)
; 0123 4567 8 (BF Offset)
move.l #$300,d0 ; $0000 0000 0011 0000 0000
bfffo do,{16:9},dl1 ; Bit 6 of BF set so DI=16+6=22

Listing 4.3: Example of the BFFFO Instruction

The result is the bit field start plus the offset into the bit field where the most significant set bit is
found. In our bit field, the starting offset is 16. The first set bit in the 9 bits making up the width of
the bit field, is bit number 6 - starting at zero - in the bit field, so the result is 16 4 6 or 22.

A valid range of values in D1 would be 16 + 0 through 16 4 8 if a single bit in any position of the
bit field was set, or 16 49 if no bits in the bit field were set.

If you need to find out exactly which bit in the register that relates to, subtract the result from 31. In
this example, 31 — 22 gives 9 and indeed, it is bit 9 in the register which is the most significant set
bit.

BFINS - Insert Bit Field

The BFINS instruction inserts a bit field taken from the low-order bits of the specified data register
into a bit field at the effective address location. This means that if you have a 3 bit wide bit field in
the effective address, then the lowest three bits of the specified data register will be copied to that
bit field.
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The instruction sets the flags as follows:

* X - Not affected.

* N - Set if the most significant bit of the field is set; cleared otherwise.
» 7 - Set if all bits of the field are zero; cleared otherwise.

* V - Always cleared.

* C - Always cleared.

Continuing the example from above, to move the three bits of DO into a three bit wide bit field of
register D4 in bits 6, 5 and 4, we would use the instruction:

BFINS DO,D4{25:3%}
Bit 0 of DO would end up in bit 4 of D4, bit 1 would be in bit 5 and bit 2 would end up in bit 6.

BFSET - Test Bit Field and Set

The BFSET instruction tests the bit field and sets the flags as follows and then sets all the bits in the
field to 1.

* X - Not affected.

* N - Set if the most significant bit of the field is set; cleared otherwise.
e 7 - Set if all bits of the field are zero; cleared otherwise.

* V - Always cleared.

* C - Always cleared.

For example, to set all the bits in bits 6 to 9 (a total of 4 bits) of register DO, we would use the
instruction:

BFSET D0{25:4%}

BFTST - Test Bit Field

The BFTST instruction tests the specified bit field and sets the flags as follows:

* X - Not affected.

* N - Set if the most significant bit of the field is set; cleared otherwise.
» 7 - Set if all bits of the field are zero; cleared otherwise.

* V - Always cleared.

* C - Always cleared.

For example, to test the bits in the 3 bit wide bit field beginning at bit 13 of D4 (that’s bit 13
numbering in the normal manner) we need to specify the following instruction:

BFTST D4{18:3}

Converting Character and Decimal Numbers

The BBQL and the MC68008 has always had the ability to add, subtract and negate Binary Coded
Decimal numbers. However, it was never easy to create such things as there were no instructions
that would convert an ASCII (or EBCDIC) string of digits, for example, into a BCD format, and
vice versa.

With the MC68020 we have the PACK and UNPK instructions to help us do exactly that.
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For other character code sets, the instructions take an immediate data portion, which is added to the
characters when encoding, and subtracted when decoding. For ASCII or EBCDIC, this immediate
data must be zero.

The PACK instruction has the two following formats:

PACK Ds,Dd,#data
PACK -(As),-(Ad),#data

The Ds or (As) registers point at the source text, while the Dd or (Ad) registers point at the
destination.

The instruction will only convert 2 bytes of the source into a single byte in the destination.

For example, if using the data register version, (D0.L) contains $31323334y,.,, which is the ASCIT
character representation of 1234, it takes up the entire 32 bits of the register. All those ‘3’ nibbles
are effectively wasted space.

The instruction PACK DO,D1,#0 will convert the ASCII in DO into the BCD value $34y,, in D1.B.

To convert a string of digits, you need to use the in memory version, or do a few shifts along the
way.

start

lea asciiDigits +8,al ; Source ASCII string

lea bcdDigits +4,a2 ; Destination BCD buffer

moveq #3,d2 ; 4 pairs of digits to convert
loop

pack —(al),—(a2) ,#0 ; Convert two bytes

dbra d2,loop ; Loop for more

; Done, bcdDigits = $12345678

asciiDigits
dc.b ’12345678° ; = $3132333435363738

bcdDigits
ds.]1 1 ; Space for result

Listing 4.4: Example of the PACK instruction

This code converts the 8 ASCII digits at asciiDigits - in reverse order - from $3132333435363738,.,

into a long word at bcdDigits which will end up containing the value $12345678,,, thus, packing
64 bits of ASCII data into 32 bits of BCD data.

The UNPK instruction has two formats:

UNPK Ds,Dd,#data
UNPK -(As),-(Ad),#data

And is simply the reverse of the PACK instruction. It converts a single byte into two separate ASCII
(or EBCDIC) characters.

start
lea bcdDigits +4,al : Source BCD buffer
lea asciiDigits +8,a2 ; Destination ASCII string
moveq #3,d2 ; 4 BCD digits to convert
loop

unpk —(al),—(a2) ,#0 ; Convert two bytes
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dbra d2,loop ; Loop for more
; Done, asciiDigits = 12345678

asciiDigits
ds.b 8 ; Space for ASCII result

bcdDigits
dc.1 $12345678 ;: Source BCD number

Listing 4.5: Example of the UNPK instruction

Once again, the data are converted in reverse so the initial buffer pointers have to be one past the
end of the buffers’ last character.

The long word at bcdDigits, $12345678,,, is converted back into the string $3132333435363738,.x
or ASCII ‘12345678’ by the above code.

Existing Instruction Upgrades

Some instructions have changed since their usage in the good old MC68008 installed in the original
BBQL. These are discussed below.

Branching and Linking

Currently, on the BBQL, we can have short (8 bit) or word branches in the Bcc, BRA and BSR
instructions. These are two’s compliment (aka signed) displacements allowing for forward and
backward branching. In the MC68020 we now have a long sized branch as well with all 32 bits
being permitted.

Using BSR as an example, we now have the following:

BSR.S and BSR.B - this form always assembles to an 8 bit displacement branch which requires two
bytes in the binary code.

BSR.W - this form always assembles to a 16 bit displacement branch which requires four bytes in
the binary code.

BSR.L - this form always assembles to a 32 bit displacement branch which requires six bytes in the
binary code.

If you don’t specify a size for the branch instruction, then it depends on whether your assembler
has been configured to always use a 16 bit displacement or if you, like me, have configured it to try
an 8 bit displacement and error out if the displacement is too far.

Note, the various Decrement and Branch Unless Condition (DBcc) instructions have not changed,
they are restricted to a word sized, 16 bit displacement as before.

The LINK instruction now also has a 32 bit displacement. If you use the old instruction LINK
An,#displacement, you continue to get the 16 bit displacement version. You can now. however,
also specify a size of .W to force a 16 bit displacement. LINK.W An,#displacement.

To force a 32 bit displacement, specify a size of .L. as in LINK.L An,#displacement.
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Division

On the BBQL we have played around with the DIVU and DIVS instructions which are word sized in
that they return a pair of 16 bit values one for the quotient and one for the remainder. Effectively, a
32 bit value is divided by a 16 bit value to return a pair of 16 bit values in a single data register. The
top word is the remainder and the low word is the quotient.

The format of these instructions was always like DIVS #1234 ,D0 and there was no need to specify
asize - .B, W or .L - because it was always .W.

On the MC68020 we now have the ability to divide 32 and 64 bit numbers by 32 bit ones, resulting
in a 32 bit number for the quotient and another for the remainder. We still have the existing word
sized divides, but now you need to specify a size of *.W’ to indicate your wish to use the old style.
Assemblers will still accept the old style of missing out the size specifier and act accordingly to
assemble the old word sized instructions.

There are a further three assembly formats for the divide instructions:

DIVS <EA>,Dn - This form divides a 32 bit long word by another 32 bit long word. The result is
a 32 bit quotient in the specified register, with the remainder being discarded. A handy integer
division instruction.

DIVS <EA>,Dr:Dq - This form divides a 64 bit quad word (in any two data registers) by a 32 bit
word taken from the effective addresss. The result is a long-word quotient in the Dq register, and a
long-word remainder in the Dr register.

DIVSL.L <EA>,Dr:Dq - This form divides a 32 bit long word by another 32 bit long word. The
result is a 32 bit quotient in the Dq register, and a 32 bit remainder in the Dr register. You should
note that this instructions has an ‘L’ tagged on as well as the *.L’ for the size. DIVSL.

Although I've used DIVS in the above examples, the DIVU instructions are identical.
Two special conditions may arise during division:

* Division by zero causes a trap.
» Overflow may be detected and set before the instruction completes. If the instruction detects
an overflow, it sets the overflow condition code, and the operands are unaffected.

The flags are set as follows:

* X - Not affected.

* N - Set if the quotient is negative; cleared otherwise; undefined if overflow or divide by zero
occurs.

Z - Set if the quotient is zero; cleared otherwise; undefined if overflow or divide by zero
occurs.

* V - Set if division overflow occurs; undefined if divide by zero occurs; cleared otherwise.

* C - Always cleared.

Multiplication

Upgrades to the MULU and MULS instructions are similar to those of the division instructions above.
Whereas up until now we have been limited to multiplying two 16 bit words to get a 32 bit result,
we now have the ability to multiply two 32 bit long words together to give either a 32 bit long word
result, or a 64 bit quad word result.

MULS.L <EA>,Dn - this form multiplies the 32 bit effective address value by the data register
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and stores the lowest 32 bits of the result in the data register. The upper 32 bits of the result are
discarded.

MULS.L <EA>,Dh-D1 - this form multiplies the 32 bit effective address value by the data register
and stores the highest 32 bits of theb result in the Dh register and the lowest 32 bits of the result in
the D1 register. Nothing is discared.

The multiplication instructions set the flags as follows:

* X - Not affected.

* N - Set if the result is negative; cleared otherwise.
e 7 - Set if the result is zero; cleared otherwise.

¢ V - Set if overflow; cleared otherwise.

* C - Always cleared.

For MULS, overflow, setting V = 1, can occur only when multiplying 32-bit operands to yield a
32-bit result. Overflow occurs if the highest 32 bits of the quad-word product are not the sign
extension of the lowest 32 bits.

For MULU, overflow, setting V = 1, can occur only when multiplying 32-bit operands to yield a
32-bit result. Overflow occurs if any of the high-order 32 bits of the quad-word product are not
equal to zero.

Overflow cannot occur when the product is a 64 bit quad word.

MOVEC - Move To/From Control Register

This instruction is only available on the has two separate formats:

MOVEC Rc,Rn MOVEC Rn,Rc

The instruction is privileged, so must be run in supervisor mode.

Register Rc is a control register, see table 4.3, while register Rn is a normal register.

Moves the contents of the specified control register (Rc) to the specified general register (Rn) or
copies the contents of the specified general register to the specified control register.

This is always a 32-bit transfer, even though the control register may be implemented with fewer
bits. Unimplemented bits are read as zeros.

What is a control register? On the MC68020 we have the following control registers:

Control Register | Description

SFC Source Function Code

DFC Destination Function Code

USP User Stack Pointer

VBR Vector Base Register
CACR Cache Control Register
CAAR Cache Address Register

MSP Master Stack Pointer

ISP Interrupt Stack Pointer

Table 4.3: MC68020 Control Registers

The flags are not affected by these instructions.
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¢ X - Not affected.
* N - Not affected.
Z - Not affected.
V - Not affected.
C - Not affected.

4.5 Other New Instructions

4.5.1

BKPT - Hardware Breakpoint Support

This is a new instruction (from the MC68010 onwards) which is useful for hardware debuggers and
is unlikely to be of any use in QL programs. However, I have been wrong in the past!

The manual has this to say about the instruction:

For the MC68010, a breakpoint acknowledge bus cycle is run with function codes driven high
and zeros on all address lines. Whether the breakpoint acknowledge bus cycle is terminated with
DTACK, BERR, or VPA, the processor always takes an illegal instruction exception. During
exception processing, a debug monitor can distinguish different software breakpoints by decoding
the field in the BKPT instruction.

For the MC68000 and MC68008*, the breakpoint cycle is not run, but an illegal instruction
exception is taken.

For the MC68020, MC68030, and CPU32, a breakpoint acknowledge bus cycle is executed with
the immediate data (value 0 — 7) on bits 2 — 4 of the address bus and zeros on bits 0 and 1 of the
address bus. The breakpoint acknowledge bus cycle accesses the CPU space, addressing type 0, and
provides the breakpoint number specified by the instruction on address lines A2 — A4. If the external
hardware terminates the cycle with DSACKx or STERM, the data on the bus (an instruction word)
is inserted into the instruction pipe and is executed after the breakpoint instruction. The breakpoint
instruction requires a word to be transferred so, if the first bus cycle accesses an 8 bit port, a second
bus cycle is required. If the external logic terminates the breakpoint acknowledge bus cycle with
BERR (i.e. no instruction word available), the processor takes an illegal instruction exception.

For the MC68040, this instruction executes a breakpoint acknowledge bus cycle. Regardless of the
cycle termination, the MC68040 takes an illegal instruction exception.

For more information on the breakpoint instruction refer to the appropriate user’s manual on bus
operation.

This instruction supports breakpoints for debug monitors and real-time hardware emulators.

So that’s clear then? It’s hardware, only Dave and Nasta (and a few others) will understand any of
the above!

The flags are not affected.

¢ X - Not affected.
* N - Not affected.
e 7 - Not affected.
¢ V - Not affected.
¢ C - Not affected.

4Excuse me? My 68008 manual, a Motorola official one, makes no mention of this instruction for either the MC68008
or the MC68010!
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CALLM - Call Module

The CALLM instruction saves the Current Module State on the stack and loads a new module state
from the destination.

The format of the instruction is:

CALLM #data,<EA>

This instruction, and RTM require external hardware to be effective.

The effective address of the instruction is the location of an external module descriptor.

A module frame is created on the top of the stack, and the current module state is saved in the
frame. (Program counter etc.)

The immediate operand specifies the number of bytes of arguments to be passed to the called
module and allows RTM to tidy the stack afterwards.

A new module state is loaded from the descriptor addressed by the effective address.
The flags are not affected.

* X - Not affected.
* N - Not affected.
e 7 - Not affected.
¢ V - Not affected.
¢ C - Not affected.

See also RTM which is used to return from a CALLM. Also note that these two instructions have been
removed from the MC68040 onwards.

CAS and cAs2 - Compare and Swap

The format of the CAS instruction is:
CAS.size Dc,Du,<EA>
The size can be .B, .W or .L.

The CAS, Compare and Swap, instruction subtracts the value in the ‘compare’ register (Dc) from
the effective address which is the destination also, and sets the condition codes accordingly.

If the Z flag gets set, the value in the ‘update’ register (Du) is moved to the destination.

If the Z flag was not set by the instruction, the contents of the effective address are moved to the Dc
register.

The CAS instruction sets the flags as follows:

* X - Not affected.

* N - Set if the most significant bit of the field is set; cleared otherwise.
e 7 - Set if the result is zero; cleared otherwise.

* V - Set if the compare generates an overflow; cleared otherwise.

* C - Set if the compare generates a carry; cleared otherwise.

An example of the CAS instruction is as follows. I admit it’s a little contrived, but it shows what
happens.

start
lea label ,al ; Where the compared data lives
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moveq #2,d2 ; Dc = compare register
move . 1 #$87654321 ,d3 ; Du = update register

cas. | d2,d3,(al) ; Compare (Al) with D2
; IF (Al) = D2 THEN
; ; LET (Al) = D3

. ; ELSE
R ; LET D2 = (Al)
: ; END IF
cas. | d2,d3,(al) ; Compare (Al) with D2 again

label
dc.1 $1234

Listing 4.6: Example of the CAS Instruction

So, in the above, the first CAS compares the value at (A1) which is $00001234,,., with the value
in D2 which is $00000002,, and they are not equal, so D2 gets loaded with the value at (A1) and
becomes $00001234y,,.

The second CAS compares the value at (A1) which is still $00001234,,., with the value in D2 which
is now also $00001234,., and they are obviously equal, so the long word at (A1) gets set to the
value in D3 which happens to be $87654321,,.

The CAS2 instruction is similar, except that it uses two ‘compare’ registers and two ‘update’ registers.
The format is:

CAS2.size Dc1:Dc2,Dul:Du2, (Rnl) : (Rn2)

This instruction compares memory operand 1 (Rnl) to compare operand 1 (Dcl). If the operands
are equal, the instruction compares memory operand 2 (Rn2) to compare operand 2 (Dc2). If these
operands are also equal, the instruction writes the update operands (Dul and Du2) to the memory
operands (Rnl and Rn2).

If either comparison fails, the instruction writes the memory operands (Rn1 and Rn2) to the compare
operands (Dcl and Dc2).

The size can be .\W or .L.
The CAS2 instruction sets the flags as follows:

* X - Not affected.

* N - Set if the most significant bit of the field is set; cleared otherwise.
* Z - Set if the result is zero; cleared otherwise.

* V - Set if the compare generates an overflow; cleared otherwise.

* C - Set if the compare generates a carry; cleared otherwise.

Both CAS and CAS2 instructions access memory using locked or read-modify-write transfer se-
quences, providing a means of synchronizing several processors in a multi-processor system.

CHK2 and cMP2 - Check/Compare Register Against Bounds

The CHK2 and CMP2 are similar instructions except that while the latter simply sets the condition
codes in the status register depending on the results of the comparison, the former traps out through
an exception vector. A tad excessive if you ask me! ;-)

The CHK2 instruction has the format:

CHK2.size <EA>,Rn
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It looks in memory at the effective address specified for two bytes, words or long words and
compares the specified register, which can be a data or address register, with the two values.

The two values are the (signed) lower and upper bounds for the comparison. The data at the
address specified in the effective address is the lower bound. The data at that address plus 1, 2 or 4,
depending on the size, is the upper bound.

The flags are set as follows:

* X - Not affected.

* N - Undefined.

* Z - Set if Rn equals either boundary value; cleared otherwise.
* V - Undefined.

* C - Setis Rn is out of range; cleared otherwise.

In operation, if the register value is equal to, or falls between the two bounds, then execution
continues as normal and the C flag is cleared. If the register value happens to equal one of the
bounds, then the Z flag will be set.

If the register value is out of bounds, then the exception is raised. A tad harsh, so let’s look at a
gentler approach. The CMP2 instruction.

This instruction takes the format:
CMP2.size <EA>,Rn
It sets the flags exactly as the CHK2 instruction does.

It operates exactly as the CHK2 instruction just described, but does not raise an exception if the
value is out of bounds. This can be useful when comparing a value in a register to determine if it is
a digit, for example, as per the following snippet:

start
lea inputBuffer ,al ; Where we find user input
checkLoop
move.b (al)+,d0 ; Grab one character
cmp2.b digitBounds ,dO ; Got a digit?
bcc. s gotDigit : Yes, handle it
cmpi.b #10,d0 ;: No, check for a linefeed?
beq.s allDone ; End of input
; Not a digit, do something else
bra.s checkLoop ; Keep going
allDone
moveq #0,d0 ; Signal done
rts ; Back to caller
gotDigits
; Handle digit input here
bra.s checkLoop ; Loop around
digitBounds
dc.b ’0°,°9° ; Range of valid digits

Listing 4.7: Example of the CMP2 Instruction

This is much less hassle than checking the character in DO with a ‘0’ and skipping out if the flags
show that DO was lower than a ‘0’ then doing something similar for a ‘9’. I also happen to think
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that it’s a lot easier to read the code done in this way.

RTM - Return From Module

This instruction, and CALLM require external hardware to be effective.

This instruction, is used to terminate a CALLM instruction. It reloads the module state from the stack.
The instruction format is:

RTM Rn
The register can be a data or address register.

A previously saved module state is reloaded from the top of stack. After the module state consisting
of program counter, status word etc, is retrieved from the top of the stack, the caller’s stack pointer
is incremented by the argument count value in the module state.

Given that this instruction has been removed from the MC68040 onwards, there’s probably not
much use for it in QL programs. See also CALLM.

The flags are set according to the word on the stack.

Coprocessor Instructions

There are numerous floating point co-processor instructions which, for now at least, are beyond
the scope of the eComic!® I'm pretty certain that George Gwilt, my faithful reader, has written a
document on these instructions. The document can be found on the Sinclair QL. Homepage.©

5T don’t have a genuine MC680020 to play with, only QPC.
Shttp://www.dilwyn.me.uk/docs/asm/fpu.zip
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http://www.dilwyn.me.uk/docs/asm/fpu.zip
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So, given that we now fully understand these new fangled 680020 instructions, can we improve
Langton’s Ant?

A 68020 Improvement, Perhaps?

As presented earlier in this issue, the code will actually assemble using the GWASL assembler that

we have been using up until now in this series'.

Given how short the code above is, relative to some of the stuff in the last issue for example, can it
be improved using the 68020 processor?

In a word, yes. We have to work out a number of things each time through the loop:

* The address of the start of the row of bytes where the current cell can be found;
* The Address of the byte, within the row, representing the current cell;
» The Address of the bit, within the byte, representing the current cell;

We need this to enable us to determine the current cell’s colour and from that where the next cell
will be, plus we also need to change the colour to black or white according to whichever rule we
activated.

The following code extract is where we work out the bit we need to set or clear in the ant’s bitmap.

; First work out the bit number in the cell’s byte. This is simply
; the 7 — (across coordinate MOD 8).

bitNumber
move.l d2,d6 ; Copy Across | Down coords

' And indeed, since I first started writing for QL Today, more years ago than I care to even begin to attempt to
remember!

i 1-”
)
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swap dé ; Down | Across

move.w d6,d4 ; Copy Across coordinate to D4
andi.w #7,d4 ; Mod 8 = 0 to 7

neg.w d4 ;. —7 to O

addq.w #7,d4 ; D4.W = bit number

; The byte within the row, which we calculate soon, is calculated as
; (across coordinate DIV 8). Easy.

byteNumber
Isr.w #3,d6 ; Across div 8

; The correct row number in the cells bitmap is the Down coordinate

; multipled by (size_x DIV 8). This shouldn’t exceed a word size. The
; result is added to A3 which is the start address of the cells

; bitmap and loaded into A4 as the byte address that we want.

doRow

move.w #size_x ,d7 ; Pixels across

Isr.w #3,d7 ; Now bytes across

mulu d2,d7 ; Times down coordinate
lea 0(a3,d7.w) ,a4 ; Address of correct row
adda.w d6,a4d ; Correct byte in row

; Given the byte address in A4 and the bit number in D4, we can now
; test that individual bit. A zero is white while a 1 is black.

btst d4,(a4) ;: 0 = white, 1 = black
Listing 5.1: Langtons Ant - Existing Bitmap Calculation

We can, should we wish to, replace all of the above using a bit field test instruction, or BFTST as
described in BFTST - Test Bit Field on page 33.

Once you have read the introduction to bit fields - Bit Fields on page 28 you will realise that we no
longer need to effectively reverse the bit numbering, as bit fields number from 0 upwards, but bit
zero is the most significant bit!

Equally, we only need to calculate the bit number within the entire bitfield, we don’t need to work
out a bit number, a byte number and a row number first.

Bit Field Calculations

To calculate the bit number we need, is now quite simple - given that bit fields start numbering at
the most significant bit. The calculation is:

across + (down * x_size)

That’s it. If, for example we are on the very first bit, that would be bit zero in a bit field, the
coordinates would both be 0, 0 for across and down, so this is 0+ (0% 256) which is still zero, and
is correct.

If we were at the far right of the very first line, we are on the 512" bit in the bitmap, and that comes
from the coordinates being 511, 0, giving 511 + (0 512) which is 511, and that is indeed the bit
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number of the 512" bit.

And so on down and across the bitmap. In our ant’s world, there are 512 by 256 cells, so we need
that many bits, which works out at 131,072 bits. (16,384 bytes)

This means that for the very bottom right coordinate, 511, 255, the bit will be 511 + (255 512)
which works out at 131,071 and yes, that’s the bit number of the 131,072 bit in the bitmap.

Currently we calculate a bit number in D4 of the byte at the address held in A4 for the current cell.
Using the 68020 we can change all of the above code to the following.

; Calculate the bit number within the cells bit field. This is simply
; across + (down x width).

bitNumber

moveq #x_size ,d4 ;. Width

mulu d2,d4 ; Width * Down

swap d2 ; Low word = Across

add .w d2,d4 ; Across + (Down x Width)
swap d2 : Restore

bftst (a3){d4:1} ; Test bit

Listing 5.2: Langtons Ant - 68020 Bitmap Calculation

As you can see, this chops a whole pile of code out and reduces the number of instructions required
to calculate which bit we need to be looking at and setting, or clearing, as part of the rules for the
ant. It also frees up D6 and A4 too, which might come in handy elsewhere - for saving D5 perhaps!

Obviously I now need to update the Register Usage comments - but I’m not showing that here.

Register A3, if you remember, was initially set to point at the Cells bitmap. So the bftst
(a3){d4: 1} instruction says to start at the address held in register A3 and count from the most
significant bit at that address, D/ bits along, then test the single bit that you arrive at.

After this, we also need to update the code for the two rules as we must set or clear the bit
representing the current cell. The existing code for the two rules is as follows.

)

; Rule 1: If the cell is white, turn it black, right turn, walk on.

ruleOne
bne.s ruleTwo
bset d4,(a4) ; Turn it black in the bitmap
moveq #black ,dl1 ; Colour for BLOCK command
subq.b #1,d5 ; Direction — 1 = right
bra.s doDirection ; Prepare to walk on

Listing 5.3: Langtons Ant - Existing Rule 1

)

: Rule 2: If the cell is black, turn it white, left turn, walk on.

ruleTwo
belr d4,(a4) ; Turn it white in the bitmap
moveq #white ,d1 ;: Colour for BLOCK command
addq.b #1.,d5 ; Direction + 1 = left

Listing 5.4: Langtons Ant - Existing Rule 2
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These would be changed to allow them to use the BFSET and BFCLR instructions, as follows:

El

; Rule 1: If the cell is white, turn it black, right turn, walk on.

)

ruleOne
bne.s ruleTwo
bfset (a3){d4:1} ; Turn it black in the bitmap
moveq #black ,dl ; Colour for BLOCK command
subgq.b #1,d5 ; Direction — 1 = right
bra.s doDirection ; Prepare to walk on

Listing 5.5: Langtons Ant - 68020 Rule 1

: Rule 2: If the cell is black, turn it white, left turn, walk on.

ruleTwo
bfclr (a3){d4:1} ; Turn it white in the bitmap
moveq #white ,d1 ; Colour for BLOCK command
addq.b #1,d5 ; Direction + 1 = left

Listing 5.6: Langtons Ant - 68020 Rule 2

So a couple of easy changes and we have a smaller source program to type in, a smaller executable
program - in my case, by a whole 34 bytes - because we took advantage of the 68020’s new
instructions.

Happy anting.
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As of a few days/weeks/months or even years ago, depending on when you read this, the source
code for the magazine' can be found on https://github.com.

If you go there (by clicking the link above) then you will find all the previous issues, except for the
first one. That one was created using a different system very unlike the current system, and I have
not yet converted it to use latex. Maybe one day I will - time permitting.

Hopefully, I'll get the source code for the various listings explained in the eMagazine, up there
soon too.

Have fun.

"But not yer the sources for the listings.


https://github.com/NormanDunbar/QLAssemblyLanguageMagazine
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The front cover image on this ePeriodical is taken from the book Kunstformen der Natur by German
biologist Ernst Haeckel. The book was published between 1899 and 1904. The image used is of
various Polycystines which are a specific kind of micro-fossil.

I have also cropped the image for use on each chapter heading page.

You can read about Polycystines on Wikipedia and there is a brief overview of the above book,
also on Wikipedia, which shows a number of other images taken from the book. (Some of which I
considered before choosing the current one!)

Polycystines have absolutely nothing to do with the QL or computing in general - in fact, I suspect
they died out before electricity was invented - but I liked the image, and decided that it would make
a good cover for the book and a decent enough chapter heading image too.

Not that I am suggesting, in any way whatsoever, that we QL fans are ancient.


https://en.wikipedia.org/wiki/Polycystine
https://en.wikipedia.org/wiki/Kunstformen_der_Natur
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